
The Musical Blob
Nathan Armstrong

University of Washington CSE

armstnp@cs.washington.edu

Daniel Chesney
University of Washington DXARTS

chesnd@uw.edu

Andrew Foster
University of Washington CSE

agf3@uw.edu

ABSTRACT
In this paper, we explain the goals, development procedures,
choices, and outcomes of ‘The Musical Blob’ project written
winter 2012 for the University of Washington Computer Science
and Engineering Sound Capstone. The project was intended as an
experimental fusion of several different technologies for the
purpose of creating a virtual instrument for live performance.

Categories and Subject Descriptors
J.5 [Computer Applications]: Arts and Humanities – performing
arts; G.1.2 [Numerical Analysis]: Approximation –
approximation of surfaces; H.5.2 [Information Interfaces and
Presentation]: User Interfaces – input devices and strategies.

General Terms
Design, Experimentation

Keywords
limb tracking, sound synthesis

1. INTRODUCTION
The Musical Blob project began with the concept of an abstract
instrument that could be manipulated to produce sounds. A
performer would be given a visual interface for a virtual system or
simulation. By manipulating the instrument, they could produce
sounds that clearly correlate to their actions. The instrument
would be abstract, and the relationship between the interaction
and the sound would be hidden, requiring exploration to discover
how to create an effective performance.

Implementing this would require a user interface that is easy to
understand, intuitive to interact with, and dynamic enough to
provide variety for the performer to work with. This also allows
anyone to use the system: from casual users who can simply enjoy
the interaction to professional performance artists who could learn
to control the instrument more precisely.

2. RELATED WORK
There have been previous projects that have investigated the
creation and use of virtual instruments. Mulder et al. [1999]
created two different modes for manipulating a virtual surface
using hand gestures and movement. In doing so, the user
simultaneously modifies the parameters sent to a sonification
system, which then produces sound based on various properties of
the surface. We desired a similar form of interaction, but focused

on a more general interactive experience, instead of focusing all
interaction solely on hand gestures.

One of the problems we came across when designing the
instrument was that of rendering a volatile, amorphous object.
While some conventional solutions to this type of problem may
provide superb visuals, they would not necessarily follow the
performance constraints required for this real-time application.
Lorensen and Cline [1987] developed an algorithm for
polygonization of an isosurface, allowing a surface to be
constructed from a grid of scalar values. Marching Cubes ended
up having a huge impact, since it permitted us to display our
instrument’s model with variable precision, which in turn enabled
us to balance between high-quality visuals and high-speed
performance.

3. SOLUTION
3.1 Design Decisions
3.1.1 Instrument Design
When proposed, the instrument itself was designated as a ‘blob’
or amorphous object with highly mutable structure. This provided
an interface that was easy to display, understand, and interact
with. We chose to restrict the interactions available to the
performer to whatever we could complete by the end of our eight-
week development period.

3.1.2 System Design
With the basic concept in place, we chose to divide the system
into discrete pieces (see Figure 1).

User input would be handled in one set of modules, which would
summarize the performer’s actions and provide necessary
information to a particle system simulation. The particle system
would use this input to manipulate the particles, and pass on
appropriate data to the interface modules. One interface module
simply renders the particles with the appearance of a contiguous
blob, as well as any other visual data to aid the performer, such as
the performer’s limb positions. Another interface module uses
various properties of the particle system as parameters for audio
synthesis.

This design was chosen because it allowed us to be highly flexible
and independent with decisions inside each module. For example,
the particle system could easily be swapped out for another

Figure 1. System Components and Flow

Limb Tracking

Particle

System

Graphics
Display

Tactile Input
(Buttons)

Sound
Generation

system that uses different particle interactions. The graphics
display could be changed to interpret the data in a different way.
The audio systems can be switched between to use the parameters
in different ways. As long as the data sent between each module
was specified beforehand, we could easily make whatever
decisions were necessary within our modules to create the greatest
impact.

3.2 Implementation Details
3.2.1 Limb Tracking
In order to allow intuitive interaction with the blob, we wanted to
be able to track the user’s movements as one of the main inputs.
Recent development with the Microsoft Kinect made it a viable
option for interaction. We considered using a captured mesh of
the user to interact with the blob, but the required library
knowledge, installation and integration time was infeasible. We
therefore chose to try tracking approximate positions of user limbs
instead.

The library we used to accomplish this was OSCeleton [3]. The
program captures data from the Kinect and uses it to track the
approximate limb positions of multiple users. The data is sent via
network packets to the receiving system, formatted as Open
Sound Control (OSC) messages [4]. Open Sound Control played
a vital role in several places in the project, providing a uniform
and reliable data transfer interface.

3.2.2 Tactile Input
There are several operations or setting that we wanted to provide.
We considered implementing these options by watching for user
poses or gestures, but ultimately decided that those would be too
easy to trigger accidentally, and would not necessarily be
straightforward to capture. We chose instead to provide a two-
part interface: a keyboard would be used for technical control,
allowing direct access to core system functionality, and a set of
Wii Remotes would be used for performance control, enabling the
user to select modes of interaction with ease.

Keyboard interaction was straightforward to implement, but for
connecting to the Wii Remotes, we selected the library wiiuse [5].
The library provided a way to connect to and poll the remotes, and
left potential for future development using the built-in
accelerometer. In the final implementation, the remotes were
bound to specific limbs, enabling per-limb interaction.

3.2.3 Particle System
The particle system was entirely custom-written for the project,
and used a simple physics system to form particle interaction.
Particle systems were selected over the manipulation of premade
models due to the relative simplicity of integrating user
interaction, ease of display, and capacity for parameter extraction.
At each simulation step, data about the particles – such as
position, acceleration, centroid, etc. – are sent to the output
modules via Open Sound Control packets.

3.2.4 Graphical Display
The particle data is taken in here and rendered to a visible format.
Based on the concept of metaballs, each particle is given some
field of influence in the form of a scalar function of distance to the
particle. A surface can be formed by tracing the function along a
specific value, or isolevel, forming an isosurface. When two
particles approach each other, their fields merge, allowing a
surface to adapt smoothly around both particles, and giving a
sense of fluidity in the visualization. However, in order to find
and render an isosurface, a method is needed to take the sum
isolevels generated by all particles and transform it into a set of

polygons that can then be easily rendered by a graphics engine,
such as OpenGL. We selected to use the Marching Cubes
algorithm for this purpose after finding a working implementation
that seemed to be efficient enough for our purposes. One
optimization we were able to make that allowed higher-quality
visuals involved separating particles into groups which would be
rendered together, allowing the normally coarse granularity of
Marching Cubes to be made much finer to fit the size of each set
of particles.

3.2.5 Audio Synthesis
Sound was synthesized and/or processed in real time with the
SuperCollider language and environment. Several audio modules
(patches) were created for use with the project, each accepting the
same set of data from the particle system as parameters. Some of
the patches also utilized live audio input from a shotgun
microphone placed near the user.

Several patches made use of granular synthesis. This method
chops an audio source (either synthesized by the program or sent
in through a microphone) into smaller pieces called grains and
replays those grains many at a time. Variations in each grain’s
duration, pitch, and envelope (attack, sustain, release) change the
overall sound, as does controlling the number of grains that can be
played at the same time.

3.2.5.1 A Detailed Example
What follows is a more detailed explanation of one of the patches,
by way of example. It does not use granular synthesis and
consists of two distinct sounds: a continuous synthesized pad and
scattered percussive samples.

The source for the pad is a UGen (unit generator) that generates
impulses at a given frequency and with a specified number of
harmonics. There is one instance of the pad corresponding to
each particle on the screen. The X position of each particle maps
to the frequency of its corresponding UGen, rounded down to
every 4th semitone. The Y-distance of each particle from the
centroid of the system is mapped to the amplitude of the
corresponding sound. The signal is then sent through a resonating
filter with hard-coded cutoff and bandwidth settings.

The percussive sounds are taken from a buffer containing a
recording of a single note played on an out-of-tune clavichord.
The sound is triggered by any particle’s impulse magnitude
exceeding a hard-coded threshold, and the playback speed is
determined by that particle’s Z position.

All output from this patch is sent through a reverb bus to make the
final sound less raw.

4. CONCLUSION
Our goal was to create a modular, tactile, interactive synthesizer,
and we succeeded in creating one. This success is tempered by
the rough look and feel of the system. Functionally, the project is
complete, but aesthetically it leaves a lot to be desired. The
display should ideally display a representation of the player or at
least the player’s hands. Sonically, the modules could each use
some work to respond more dramatically to typical user input.
We could collect usage statistics to better calibrate our audio
modules. Modularity is a good thing, but the musical blob is
spread across so many different interconnected technologies that
any number of unexpected problems can crop up at any time.
Consolidating would have made the project more practical and
portable, but given our time and budget constraints, we worked
with existing hardware and libraries as much as we could.

5. REFERENCES
[1] Axel G. E. Mulder, S. Sidney Fels, and Kenji Mase. 1999.

Design of virtual 3D instruments for musical interaction.
In Proceedings of the 1999 conference on Graphics interface
'99. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 76-83.

[2] William E. Lorensen and Harvey E. Cline. 1987. Marching
cubes: A high resolution 3D surface construction
algorithm. SIGGRAPH Comput. Graph. 21, 4 (August 1987),
163-169. DOI=10.1145/37402.37422
http://doi.acm.org/10.1145/37402.37422

[3] github, 2012. OSCeleton repository.
https://github.com/Sensebloom/OSCeleton

[4] Open Sound Control, 2012. Open Sound Control.
http://opensoundcontrol.org/

[5] SourceForge, 2012. wiiuse repository.
http://sourceforge.net/projects/wiiuse/

