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ABSTRACT 
In this paper, we explain the goals, development procedures, 
choices, and outcomes of ‘The Musical Blob’ project written 
winter 2012 for the University of Washington Computer Science 
and Engineering Sound Capstone.  The project was intended as an 
experimental fusion of several different technologies for the 
purpose of creating a virtual instrument for live performance. 

Categories and Subject Descriptors 
J.5 [Computer Applications]: Arts and Humanities – performing 
arts; G.1.2 [Numerical Analysis]: Approximation – 
approximation of surfaces; H.5.2 [Information Interfaces and 
Presentation]: User Interfaces – input devices and strategies. 

General Terms 
Design, Experimentation 

Keywords 
limb tracking, sound synthesis 

1. INTRODUCTION 
The Musical Blob project began with the concept of an abstract 
instrument that could be manipulated to produce sounds.  A 
performer would be given a visual interface for a virtual system or 
simulation.  By manipulating the instrument, they could produce 
sounds that clearly correlate to their actions.  The instrument 
would be abstract, and the relationship between the interaction 
and the sound would be hidden, requiring exploration to discover 
how to create an effective performance. 

Implementing this would require a user interface that is easy to 
understand, intuitive to interact with, and dynamic enough to 
provide variety for the performer to work with.  This also allows 
anyone to use the system: from casual users who can simply enjoy 
the interaction to professional performance artists who could learn 
to control the instrument more precisely. 

2. RELATED WORK 
There have been previous projects that have investigated the 
creation and use of virtual instruments.  Mulder et al. [1999] 
created two different modes for manipulating a virtual surface 
using hand gestures and movement.  In doing so, the user 
simultaneously modifies the parameters sent to a sonification 
system, which then produces sound based on various properties of 
the surface.  We desired a similar form of interaction, but focused 

on a more general interactive experience, instead of focusing all 
interaction solely on hand gestures. 

One of the problems we came across when designing the 
instrument was that of rendering a volatile, amorphous object.  
While some conventional solutions to this type of problem may 
provide superb visuals, they would not necessarily follow the 
performance constraints required for this real-time application.  
Lorensen and Cline [1987] developed an algorithm for 
polygonization of an isosurface, allowing a surface to be 
constructed from a grid of scalar values.   Marching Cubes ended 
up having a huge impact, since it permitted us to display our 
instrument’s model with variable precision, which in turn enabled 
us to balance between high-quality visuals and high-speed 
performance. 

3. SOLUTION 
3.1 Design Decisions 
3.1.1 Instrument Design 
When proposed, the instrument itself was designated as a ‘blob’ 
or amorphous object with highly mutable structure.  This provided 
an interface that was easy to display, understand, and interact 
with.  We chose to restrict the interactions available to the 
performer to whatever we could complete by the end of our eight-
week development period. 

3.1.2 System Design 
With the basic concept in place, we chose to divide the system 
into discrete pieces (see Figure 1). 

User input would be handled in one set of modules, which would 
summarize the performer’s actions and provide necessary 
information to a particle system simulation.  The particle system 
would use this input to manipulate the particles, and pass on 
appropriate data to the interface modules.  One interface module 
simply renders the particles with the appearance of a contiguous 
blob, as well as any other visual data to aid the performer, such as 
the performer’s limb positions.  Another interface module uses 
various properties of the particle system as parameters for audio 
synthesis. 

This design was chosen because it allowed us to be highly flexible 
and independent with decisions inside each module.  For example, 
the particle system could easily be swapped out for another 

 

 

Figure 1. System Components and Flow 
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system that uses different particle interactions. The graphics 
display could be changed to interpret the data in a different way.  
The audio systems can be switched between to use the parameters 
in different ways.  As long as the data sent between each module 
was specified beforehand, we could easily make whatever 
decisions were necessary within our modules to create the greatest 
impact. 

3.2 Implementation Details 
3.2.1 Limb Tracking 
In order to allow intuitive interaction with the blob, we wanted to 
be able to track the user’s movements as one of the main inputs.  
Recent development with the Microsoft Kinect made it a viable 
option for interaction.  We considered using a captured mesh of 
the user to interact with the blob, but the required library 
knowledge, installation and integration time was infeasible.  We 
therefore chose to try tracking approximate positions of user limbs 
instead. 

The library we used to accomplish this was OSCeleton [3].  The 
program captures data from the Kinect and uses it to track the 
approximate limb positions of multiple users.  The data is sent via 
network packets to the receiving system, formatted as Open 
Sound Control (OSC) messages [4].  Open Sound Control played 
a vital role in several places in the project, providing a uniform 
and reliable data transfer interface. 

3.2.2 Tactile Input 
There are several operations or setting that we wanted to provide.  
We considered implementing these options by watching for user 
poses or gestures, but ultimately decided that those would be too 
easy to trigger accidentally, and would not necessarily be 
straightforward to capture.  We chose instead to provide a two-
part interface: a keyboard would be used for technical control, 
allowing direct access to core system functionality, and a set of 
Wii Remotes would be used for performance control, enabling the 
user to select modes of interaction with ease. 

Keyboard interaction was straightforward to implement, but for 
connecting to the Wii Remotes, we selected the library wiiuse [5].  
The library provided a way to connect to and poll the remotes, and 
left potential for future development using the built-in 
accelerometer.  In the final implementation, the remotes were 
bound to specific limbs, enabling per-limb interaction. 

3.2.3 Particle System 
The particle system was entirely custom-written for the project, 
and used a simple physics system to form particle interaction.  
Particle systems were selected over the manipulation of premade 
models due to the relative simplicity of integrating user 
interaction, ease of display, and capacity for parameter extraction.  
At each simulation step, data about the particles – such as 
position, acceleration, centroid, etc. – are sent to the output 
modules via Open Sound Control packets. 

3.2.4 Graphical Display 
The particle data is taken in here and rendered to a visible format.  
Based on the concept of metaballs, each particle is given some 
field of influence in the form of a scalar function of distance to the 
particle.  A surface can be formed by tracing the function along a 
specific value, or isolevel, forming an isosurface. When two 
particles approach each other, their fields merge, allowing a 
surface to adapt smoothly around both particles, and giving a 
sense of fluidity in the visualization.  However, in order to find 
and render an isosurface, a method is needed to take the sum 
isolevels generated by all particles and transform it into a set of 

polygons that can then be easily rendered by a graphics engine, 
such as OpenGL.  We selected to use the Marching Cubes 
algorithm for this purpose after finding a working implementation 
that seemed to be efficient enough for our purposes.  One 
optimization we were able to make that allowed higher-quality 
visuals involved separating particles into groups which would be 
rendered together, allowing the normally coarse granularity of 
Marching Cubes to be made much finer to fit the size of each set 
of particles. 

3.2.5 Audio Synthesis 
Sound was synthesized and/or processed in real time with the 
SuperCollider language and environment.  Several audio modules 
(patches) were created for use with the project, each accepting the 
same set of data from the particle system as parameters.  Some of 
the patches also utilized live audio input from a shotgun 
microphone placed near the user.   

Several patches made use of granular synthesis.  This method 
chops an audio source (either synthesized by the program or sent 
in through a microphone) into smaller pieces called grains and 
replays those grains many at a time.  Variations in each grain’s 
duration, pitch, and envelope (attack, sustain, release) change the 
overall sound, as does controlling the number of grains that can be 
played at the same time. 

3.2.5.1 A Detailed Example 
What follows is a more detailed explanation of one of the patches, 
by way of example.  It does not use granular synthesis and 
consists of two distinct sounds: a continuous synthesized pad and 
scattered percussive samples.   

The source for the pad is a UGen (unit generator) that generates 
impulses at a given frequency and with a specified number of 
harmonics.  There is one instance of the pad corresponding to 
each particle on the screen.  The X position of each particle maps 
to the frequency of its corresponding UGen, rounded down to 
every 4th semitone.  The Y-distance of each particle from the 
centroid of the system is mapped to the amplitude of the 
corresponding sound.  The signal is then sent through a resonating 
filter with hard-coded cutoff and bandwidth settings. 

The percussive sounds are taken from a buffer containing a 
recording of a single note played on an out-of-tune clavichord.  
The sound is triggered by any particle’s impulse magnitude 
exceeding a hard-coded threshold, and the playback speed is 
determined by that particle’s Z position. 

All output from this patch is sent through a reverb bus to make the 
final sound less raw. 

4. CONCLUSION 
Our goal was to create a modular, tactile, interactive synthesizer, 
and we succeeded in creating one.  This success is tempered by 
the rough look and feel of the system.  Functionally, the project is 
complete, but aesthetically it leaves a lot to be desired.  The 
display should ideally display a representation of the player or at 
least the player’s hands.  Sonically, the modules could each use 
some work to respond more dramatically to typical user input.  
We could collect usage statistics to better calibrate our audio 
modules.  Modularity is a good thing, but the musical blob is 
spread across so many different interconnected technologies that 
any number of unexpected problems can crop up at any time.  
Consolidating would have made the project more practical and 
portable, but given our time and budget constraints, we worked 
with existing hardware and libraries as much as we could. 
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